If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36d^2=4
We move all terms to the left:
36d^2-(4)=0
a = 36; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·36·(-4)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*36}=\frac{-24}{72} =-1/3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*36}=\frac{24}{72} =1/3 $
| 56=3,14t+21 | | 81v^2=9 | | |3x+15|=6x | | 48=8,21t | | w^2-48=-44 | | 2xX+3=11 | | 6x-7=12+x | | 25/2=x | | -2(4-x)=6(x+1)+3x | | 3t+24=12 | | 3x/4-7=5x+12 | | 2(6x+2)-3(5x-5)=4(6x-20) | | 25/2x17=15 | | 144g^2=100 | | -4x(x-8)=-6(4+3x) | | (55+13)s=1370 | | x+3=5-2x | | a^2/2=3a | | x^2=-73 | | 36×n=9 | | 9(6x-8)=144 | | 7=k+13 | | 3x–7=5x+3 | | S(x+1.47)+x=113.4 | | (-9)-16-8=x | | 12x+61=8 | | x2-3x(2+x)=-x(3+2x)+15 | | 9x+12=3(1-2x) | | 4x-17=x+28 | | 2y+-0.5y=23.5 | | 0.75x+3.5=0.9x | | 0.75x+3.5=x |